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Abstract. We extend automatic instance generation methods to allow
cross-paradigm comparisons. We demonstrate that it is possible to com-
pletely automate the search for benchmark instances that help to dis-
criminate between solvers. Our system starts from a high level human-
provided problem specification, which is translated into a specification
for valid instances. We use the automated algorithm configuration tool
irace to search for instances, which are translated into inputs for both
MIP and CP solvers by means of the Conjure, Savile Row, and MiniZinc
tools. These instances are then solved by CPLEX and Chuffed, respec-
tively. We constrain our search for instances by requiring them to exhibit
a significant advantage for MIP over CP, or vice versa. Experimental re-
sults on four optimisation problem classes demonstrate the effectiveness
of our method in identifying instances that highlight differences in per-
formance of the two solvers.
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1 Introduction

When developing a model of a combinatorial problem class, a set of represen-
tative instances drawn from the class is essential for evaluating the model’s
performance. Recently, Akgn et al. [1] demonstrated how to generate instances
automatically from the Essence 1 specification of a problem class [10]. The in-
stances generated are graded : neither too difficult nor too easy relative to a given
solver and resource limits. Graded instances are particularly valuable for model
evaluation, since they are less likely to be solved trivially with the model under
development or to remain unsolved at the expiry of a time budget. Either of
these outcomes would reveal little useful information about model performance.

In this paper we consider a more complex situation: rather than focus on
modelling for a single solving paradigm, it is often the case that we might wish
to evaluate two or more solving paradigms for a problem of interest. In this

1 Essence is an abstract constraint specification language that supports a formal
statement of a problem without committing to detailed modelling decisions.
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context, it is desirable to generate instances that are not only graded, but also
discriminating , i.e. which exhibit a pronounced difference in solving performance
among the solving paradigms under consideration. Discriminating instances are
valuable both for a manual inspection of the instance characteristics that favour
one paradigm over the others, and to provide coverage of the instance space when
training the selection process for an algorithm portfolio [28]. Our hypothesis is
that starting from a single high-level specification of a problem we can generate
discriminating instances automatically via synthesising an “instance generator
model” and using standard algorithm tuning tools.

We consider two paradigms: Constraint Programming (CP) and Mixed In-
teger Programming (MIP). Extending the approach of Akgn et al., we employ
the automated configuration tool irace [22] to search for graded discriminating
instances for the CP solver Chuffed [7] and the MIP solver CPLEX [17]. This
search is performed twice, with each solver in turn first considered the base
solver, and the other the favoured solver. irace is guided to search for discrimi-
nating instances where the favoured solver performs significantly better than the
base solver. The advantage of this approach is that, even when one of the two
solvers predominantly performs better, the search for discriminating instances is
pushed towards regions of the instance space where the generally weaker solver
has the advantage. This provides good coverage of the instance space and a clear
picture of relative solver performance, as our empirical results demonstrate.

2 Related work

Benchmarks play an important role in combinatorial optimisation as they are of-
ten the main device employed to verify the quality of solvers. For a long time this
involved bundling a collection of problem instances, with one or more problem
classes, that are then solved and compared by practitioners. In many cases, this
has led to the reuse of the same set of instances for several decades causing algo-
rithms to become highly tailored to solve those specific sets and becoming less
generally applicable [13]. This is not an ideal practice, as it has been observed
that different algorithmic techniques have their own strengths and weaknesses
[30,6,19]. An alternative approach is making use of instance generators that can
produce a stream of new instances. The two main approaches to generate in-
stances in an automated manner are based on handcrafted programs [15,9,32],
where practitioners use their knowledge to specify desired characteristics, and
on meta-heuristic approaches where instances are created and selected accord-
ing to some objective functions [29,18]. In both cases these generators can pro-
duce instances only for specific problem classes and making them applicable to
new problem classes would require substantial modifications. Another criticism
raised [31] is that often only a small number of algorithms are tested on a small
set of instances to certify the superiority of one algorithm over another instead
of studying the strengths and weaknesses of both.

Belov et al. [6] demonstrated automatic translation of CP specifications ex-
pressed in the MiniZinc language to lower-level FlatZinc [24], using knowledge of
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the target paradigm to guide the translation. Their experiments showed that the
MIP and CP solving paradigms have different sets of strengths and weaknesses,
and found discriminating instances among the MiniZinc benchmarks.

Generation of discriminating instances is increasingly popular [4], for instance
to measure algorithm performance across instances [28] or to improve algorithm
selection tools [30,14]. Most studies in this area tackle one problem class at a
time. We here extend [1] to automatically produce instances for any problem
class. The goal is to automate finding instances that are particularly suited to
one algorithm but not another, and to study characteristics of these instances.

3 Background

CP and MIP solvers work by solving a problem instance model composed of
decision variables with associated domains, a set of constraints on the deci-
sion variables (and optionally an objective function for optimisation problems).
CP modelling languages typically offer a richer language in comparison to MIP
modelling languages thanks to having a richer set of constraint types. Modern
modelling languages for both formalisms allow models to be written for a prob-
lem class. A problem class model is instantiated by a modelling tool before it is
given to a solver to achieve a problem instance model.

Essence is a problem specification language for combinatorial decision and
optimisation problems [10]. Essence supports abstract decision variables, such
as multiset, relation and function, as well as nested types, such as multiset of sets.
In addition to language features for specifying decision variables, constraints and
the objective function (find, such that, min/maximising respectively) it allows
the specification of problem parameters which define problem instances (given)
and restrictions on values that parameters can take on valid instances (where).

Problem specifications written in Essence are converted to class level con-
straint models by Conjure [3,2], which are then fed into Savile Row [26] to
instantiate the model and convert it into input suitable for a supported solver.
Savile Row also applies instance level model improvements automatically [26].

A problem specification can be automatically converted to an instance gen-
erator specification by Conjure [1]. First, the given statements that declare pa-
rameters are converted into find statements that declare corresponding decision
variables. Second, the where statements are converted to such that statements.
This process is explained in more detail in [1].

The main objective of [1] was to generate graded instances (neither too easy
nor too hard for a selected backend solver). This is achieved by using a general-
purpose automated algorithm tuning tool to search for generator configurations
covering the problem instance space, with solving time between the given bounds.
In [1], irace was used for this task. irace is an automated algorithm configura-
tion tool that supports tuning parameters of algorithms efficiently. The core idea
behind irace is iterated racing, an iterative search procedure where at each itera-
tion, statistical tests are used to eliminate configurations with poor performance
early, so that the budget is saved for evaluating more promising configurations.
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4 Experimental method

4.1 Problem classes

We demonstrate our method on the following four optimisation problem classes.
The first three are typically solved by Operations Research methods. We work
with existing Essence specifications from CSPlib [12], where available.
Transshipment (TP): Given costs of transporting goods from a warehouse to
a transshipment point and from a transshipment point to a customer, warehouse
stock levels, and customer demand, the objective is to minimise the total trans-
port cost while meeting customer demand.TP is known to have efficient linear
programming solutions [27] and we expected CPLEX to dominate Chuffed.
Progressive Party (PPP, CSPlib 013): The objective is to minimise the
number of boats hosting a party at a yacht club, where some boats (with ca-
pacities) are designated as hosts, and the crews of the remaining boats visit the
host boats for fixed time periods; two guest crews may meet at most once. PPP
is a classic CP problem and we expected Chuffed to dominate CPLEX.
Warehouse Location (WLP, CSPlib 034): A central warehouse will supply
depots, each with a maintenance cost and a capacity; each store will be supplied
from exactly one depot at some cost. The objective is to find a subset of depots
to open so as to minimise the sum of the maintenance and supply costs. We had
no prior opinion on whether CP would outperform MIP.
Capacitated Vehicle Routing (CVRP): The task is to find least cost routes
for identical vehicles with capacities, delivering goods from a central depot. Each
location is visited once by one vehicle. A route starts at the depot and finishes
there [8,20]. We had no prior opinion on whether MIP would outperform CP.

4.2 irace’s scoring function to find discriminating instances

Each evaluation during the tuning involves a generator configuration and a ran-
dom seed, both sampled by irace. The CP solver minion [11] is used to solve the
configuration with the given random seed. A solution is returned as an instance
of the original problem. That instance is evaluated using the two solvers and a
score value (to be minimised) is calculated. The default setting of irace compares
configurations based on ranking. Therefore, the absolute difference between score
values is not important. Details of the scoring are as follows.

– If the generator configuration is unsatisfiable, then a special infinite score
value is returned. irace will discard the configuration immediately.

– If the generator configuration is too large be to translated (Savile Row is out
of time or memory), or not solvable by minion, then the score is set to 2.

– If the generator configuration is satisfiable and an instance is found:
• if the instance is unsatisfiable or too large to be translated (Savile Row

is out of time or memory for either solver), then a score of 1 is returned,
• if the instance is too difficult for the favoured solver, or too easy for the

base solver, then a score of 0 is returned, or

http://www.csplib.org/Problems/prob013/
http://www.csplib.org/Problems/prob034/
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• if the instance is solved within the given time and memory limits, then
the negation of the ratio between the solving time of the base and the
favoured solvers is returned.

4.3 Experimental setup

The memory limit given to each evaluation is 7GB. The time limit for Savile Row
and minion is 5 minutes each. The time limit for the favoured solver is 5 minutes,
while the base solver is allowed between 10 seconds and 25 minutes. Chuffed
version 0.10.3 and CPLEX version 12.9 are used. Instances are translated to
Chuffed directly via Savile Row. CPLEX input is translated to MiniZinc format
first using Savile Row, and then to CPLEX input format using MiniZinc [6]. The
compilation time required by MiniZinc was never more than a few seconds, as
the input MiniZinc files have been pre-processed and optimised by Savile Row.

Solving time on an instance is calculated as the average value across three
runs. Each experiment is run on a cluster node with two 2.1 GHz Intel Xeon
E5-2695 processors. Since irace supports parallelism, 30 cores are used per ex-
periment. Each tuning is given a budget of 5000 evaluations and 48 hours of
wall-time, and is stopped when either of the two budgets is exhausted.

5 Results

The discriminating instances found2 for each problem class are plotted in Fig-
ure 1. Table 1 details how many evaluations the tuning spent on each type of
instance, with numbers describing what the search space looks like during tuning.

For CVRP and PPP, we found discriminating instances for both CPLEX
and Chuffed. However, the number of instances found in the Chuffed-favoured
experiment is larger than in the CPLEX-favoured experiment (≈ 2000 vs. ≈ 50
instances for CVRP, and ≈ 1400 vs. ≈ 600 instances for PPP). Detailed results
on the search space during the tuning show that in the Chuffed-favoured experi-
ment, the majority of evaluations is spent on instances solved by Chuffed within
300 seconds, while in the CPLEX-favoured experiment, the majority is spent
on instances where CPLEX timed out (both problem classes), or on instances
that are very easy for Chuffed (CVRP only). This indicates that in our current
setting, although instances where CPLEX is better than Chuffed on those two
problem classes exist (and are found by our tuning), overall Chuffed is better at
solving these problems than CPLEX.

For the two remaining problems, Transshipment and Warehouse Location, we
see a different picture. Many CPLEX-favoured instances are found, while there
are no Chuffed-favoured instances at all. For Transshipment, in the majority of
evaluations in both tuning experiments either Chuffed times out or the generator
configuration was not solved in time. Figure 1 also shows that CPLEX’s solving
time on the discriminating instances of the same problem is quite small (≤ 10

2 Code and data are at: https://github.com/stacs-cp/CPAIOR2020-InstanceGen

https://github.com/stacs-cp/CPAIOR2020-InstanceGen
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(a) PPP (b) CVRP

(c) Transshipment (d) Warehouse Location

Fig. 1: Solving time of Chuffed and CPLEX on the discriminating instances found. We
run irace twice with each solver favoured in turn. The plotted time-outs are only for
the base solver.

seconds). These observations suggest that CPLEX completely dominates Chuffed
on Transshipment, which is exactly what we expected. For Warehouse Location,
the story is a bit different. Instances in the CPLEX-favoured experiment are
mostly too easy for Chuffed. A more detailed look at those instances reveals
that Chuffed is comparable to CPLEX on the instances that are “too easy”.
Therefore, we conjecture that CPLEX may not completely dominate Chuffed
on Warehouse Location, but it does dominate Chuffed on the “more difficult”
instances which take at least 10 seconds to solve by Chuffed in our setup.

6 Feature analysis

To gain more insights into the discriminating instances found, we extract their
FlatZinc features using the fzn2feat tool (part of mzn2feat[5]). There are 95
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gen
failed

SR-timeout
& unsat

base
easy

favoured
timeout

within the range
ratio≤1 ratio>1 ratio>2 ratio>10

PPP-chuffed 85 932 538 554 4 1474 1471 1419
PPP-cplex 67 1019 301 1290 14 670 665 597
CVRP-chuffed 457 178 1117 741 4 2225 2224 2080
CVRP-cplex 686 178 1768 1865 330 110 59 8
TP-chuffed 1762 30 323 2862 0 0 0 0
TP-cplex 2108 479 50 643 0 1096 1096 1038
WLP-chuffed 626 58 4277 34 0 0 0 0
WPL-cplex 819 298 1174 0 0 519 518 481
Table 1: Number of runs for each instance type during tuning. Experiment name has
the problem class and the favoured solver. Columns: gen failed (unsolved generator
configurations), SR-timeout&unsat (Savile Row timed out or the instances are unsat-
isfiable), base easy (solved by the base solver within 10s), favoured timeout (the
favoured solver timed out), within the range (sat instances solved within 300s by the
favoured solver and not solved within 10s by the base solver). The four final numbers
for each experiment show how discriminating instances are; ratio is solving time of
the base to the favoured solver. If the base solver times out, 25min is used.

features grouped into 6 categories (variables, constraints, domains, global con-
straints, objective, and solving features) [5]. For each of the two problem classes
where discriminating instances are found, CVRP and PPP, we use the Balanced
Random Forest classifier from the Python package imblearn [21] with 200 esti-
mators and 5-fold cross validation. To identify the most important features rep-
resenting the discriminating property between the two solvers, Mean Decrease
Impurity [23] of each feature is calculated across 20 runs. Random Forests have
been shown to be the overall best choice for modelling running time of CP and
SAT solvers [16]. The Mean Decrease Impurity (MDI) is a widely-used measure-
ment for feature importance analyses in Random Forest models. The MDI of a
feature in each tree is the weighted decrease in impurity (using Gini importance)
across all tree nodes where the feature is used in the splits. The overall MDI of
a feature is calculated by averaging the MDI values across all trees in the forest.

To avoid noise in the measurement of solving time, we only consider discrim-
inating instances where the ratio between the solving time of the bad solver and
the good solver is larger than 1.5. Each instance is labelled as either Chuffed-
favoured or CPLEX-favoured.

Figure 2 show the importance values of the top 10 features for PPP and
CVRP. For PPP, the first feature, v cv domdeg vars, shows a much higher im-
portance value compared to the rest. This feature defines the Coefficient of Vari-
ance of the ratios between domain size and degree (number of constraints in-
volved) of all variables. A more detailed look into the data indicates that Chuffed-
favoured instances tend to have similar ratios between domain size over degree
across different variables, while for CPLEX-favoured instances those ratios differ
more drastically between variables. For CVRP, there is no clearly distinguished
single feature. Moreover, the list of the most important features varies between
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the two different problem classes. This suggests that the favouring-behaviours
of the two solvers depend on the problem.

(a) PPP (b) CVRP

Fig. 2: Top 10 FlatZinc features for discriminating instances based on MDI

7 Conclusion and future work

In this work, we presented an automated instance generation system that can
produce discriminating instances between two solvers. We demonstrated our
method on four problem classes with the CP solver Chuffed and the MIP solver
CPLEX. This revealed the strengths and weaknesses of each solver. A further
analysis of the discriminating instances using FlatZinc features [5] suggests that
the discriminating behaviour is problem dependent.

In future work, we plan to extend our system for finding discriminating in-
stances for a portfolio of more than two solvers; the open question here is how to
define the discriminating property. We also plan more detailed feature analysis
investigating the relationship between solver performance and instance space.
This can involve defining new instance features based on the high-level types
supported by Essence, which may provide more high-level structural informa-
tion about the instances. Finally, we currently rely on irace’s built-in exploration
of the generator configuration space to ensure the diversity of the generated in-
stances. This can be improved by investigating more advanced approaches for
controlling instance diversity more directly, including incorporating a diversity
measurement such as multi-objective indicators [25] into the scoring values of the
tuning, or forcing each generator configuration to generate instances far away
from the current instance set by adding constraints into the generator model.
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